Bird Flu Alarm



Understanding Avian Influenza

DISEASE IN BIRDS

DISEASE IN BIRDS

Avian influenza is an infectious disease of birds caused by type A strains of the influenza virus. The disease occurs worldwide. While all birds are thought to be susceptible to infection with avian influenza viruses, many wild bird species carry these viruses with no apparent signs of harm.

Other bird species, including domestic poultry, develop disease when infected with avian influenza viruses. In poultry, the viruses cause two distinctly different forms of disease ? one common and mild, the other rare and highly lethal. In the mild form, signs of illness may be expressed only as ruffled feathers, reduced egg production, or mild effects on the respiratory system. Outbreaks can be so mild they escape detection unless regular testing for viruses is in place.

In contrast, the second and far less common highly pathogenic form is difficult to miss. First identified in Italy in 1878, highly pathogenic avian influenza is characterized by sudden onset of severe disease, rapid contagion, and a mortality rate that can approach 100% within 48 hours. In this form of the disease, the virus not only affects the respiratory tract, as in the mild form, but also invades multiple organs and tissues. The resulting massive internal haemorrhaging has earned it the lay name of "chicken Ebola".

All 16 HA (haemagluttinin) and 9 NA (neuraminidase) subtypes of influenza viruses are known to infect wild waterfowl, thus providing an extensive reservoir of influenza viruses perpetually circulating in bird populations. In wild birds, routine testing will nearly always find some influenza viruses. The vast majority of these viruses cause no harm.

To date, all outbreaks of the highly pathogenic form of avian influenza have been caused by viruses of the H5 and H7 subtypes. Highly pathogenic viruses possess a tell-tale genetic "trade mark" or signature ? a distinctive set of basic amino acids in the cleavage site of the HA ? that distinguishes them from all other avian influenza viruses and is associated with their exceptional virulence.

Not all virus strains of the H5 and H7 subtypes are highly pathogenic, but most are thought to have the potential to become so. Recent research has shown that H5 and H7 viruses of low pathogenicity can, after circulation for sometimes short periods in a poultry population, mutate into highly pathogenic viruses. Considerable circumstantial evidence has long suggested that wild waterfowl introduce avian influenza viruses, in their low pathogenic form, to poultry flocks, but do not carry or directly spread highly pathogenic viruses. This role may, however, have changed very recently: at least some species of migratory waterfowl are now thought to be carrying the H5N1 virus in its highly pathogenic form and introducing it to new geographical areas located along their flight routes.

Apart from being highly contagious among poultry, avian influenza viruses are readily transmitted from farm to farm by the movement of live birds, people (especially when shoes and other clothing are contaminated), and contaminated vehicles, equipment, feed, and cages. Highly pathogenic viruses can survive for long periods in the environment, especially when temperatures are low. For example, the highly pathogenic H5N1 virus can survive in bird faeces for at least 35 days at low temperature (4oC). At a much higher temperature (37oC), H5N1 viruses have been shown to survive, in faecal samples, for six days.

For highly pathogenic disease, the most important control measures are rapid culling of all infected or exposed birds, proper disposal of carcasses, the quarantining and rigorous disinfection of farms, and the implementation of strict sanitary, or "biosecurity", measures. Restrictions on the movement of live poultry, both within and between countries, are another important control measure. The logistics of recommended control measures are most straightforward when applied to large commercial farms, where birds are housed indoors, usually under strictly controlled sanitary conditions, in large numbers. Control is far more difficult under poultry production systems in which most birds are raised in small backyard flocks scattered throughout rural or periurban areas.

When culling ? the first line of defence for containing outbreaks ? fails or proves impracticable, vaccination of poultry in a high-risk area can be used as a supplementary emergency measure, provided quality-assured vaccines are used and OIE recommendations are strictly followed. The use of poor quality vaccines or vaccines that poorly match the circulating virus strain may accelerate mutation of the virus. Poor quality animal vaccines may also pose a risk for human health, as they may allow infected birds to shed virus while still appearing to be disease-free.

Apart from being difficult to control, outbreaks in backyard flocks are associated with a heightened risk of human exposure and infection. These birds usually roam freely as they scavenge for food and often mingle with wild birds or share water sources with them. Such situations create abundant opportunities for human exposure to the virus, especially when birds enter households or are brought into households during adverse weather, or when they share areas where children play or sleep. Poverty exacerbates the problem: in situations where a prime source of food and income cannot be wasted, households frequently consume poultry when deaths or signs of illness appear in flocks. This practice carries a high risk of exposure to the virus during slaughtering, defeathering, butchering, and preparation of poultry meat for cooking, but has proved difficult to change. Moreover, as deaths of birds in backyard flocks are common, especially under adverse weather conditions, owners may not interpret deaths or signs of illness in a flock as a signal of avian influenza and a reason to alert the authorities. This tendency may help explain why outbreaks in some rural areas have smouldered undetected for months. The frequent absence of compensation to farmers for destroyed birds further works against the spontaneous reporting of outbreaks and may encourage owners to hide their birds during culling operations.